《转化策略》教学反思
身为一名到岗不久的人民教师,教学是重要的任务之一,对学到的教学技巧,我们可以记录在教学反思中,怎样写教学反思才更能起到其作用呢?下面是小编为大家收集的《转化策略》教学反思,仅供参考,欢迎大家阅读。
《转化策略》教学反思1预习,正越来越被更多的小学数学老师所青睐,它作为一种学习方法,预习习惯的养成,预习方法的掌握,对于培养学生终生学习的能力,促进学生终生发展有着不可估量的作用,这不容置疑。
可有些老师提出:教材中一些需要推导算理、计算公式以及需要探究后才得出结论的内容不必安排预习。理由是抹杀了学生探究的欲望,就不具备探究学习的条件了。而我恰恰认为,这类课,预习过后,合理组织教学,也可以培养学生的思维能力,或者说反而具有更高的思维含量。
例六年级上册《解决问题策略――替换》一课,我是这样组织预习的:
(1)布置阅读书上P89-90页的内容;
(2)720毫升全部倒入小杯需要几个小杯,全部倒入大杯需要几个大杯?你是怎样想的?
(3)在解决例题时,你是怎样替换的?
(4)在探究过程中,你还遇到什么问题?
第二天,我这样检查预习并组织新课,分为这几个层次:
1.开门见山,检查预习情况,指名学生解答预习要求;
2.720毫升全部倒入小杯需要9个小杯,9个小杯是怎么来的?
3.同样720毫升,全部倒入大杯需要3个大杯,3个大杯是怎么来的?
4.小结两种替换方法(大杯换小杯,或小杯换大杯);
5.组织验证;
6.质疑:预习中你还遇到了什么问题?
7.改变条件拓展提升:把小杯容量是大杯的1/3,改成大杯容量比小杯容量多160毫升,让学生思考如何替换,组内交流。
8.对比总结:这两题有什么不同?
9.巩固训练:如何用替换这一策略解决实际生活中的问题。
反思:这样的课堂把原来要通过探究,最终得到的“替换”这一解决问题的策略,让学生预习感知,并通过预习反馈,延续下面的探究活动,解决这节课的重难点,可谓单刀直入,不拐弯抹角,学生的思路清晰,思考方向明确。问题是数学的心脏,我让学生创造性的学习,把学习的主动权交给学生。这样,学生有充足的思考时间,有自由的活动空间,有自我表现的机会,促进了创造性思维的发展。谁又能说抹杀了学生探究的欲望,就不具备探究学习的条件了呢?反而,我认为:
1.这样的课堂,高度激发了学生的参与热情,充分地展现了多样化的见解,能让不同层次的学生都有话说,都能或多或少有自己的思考,不至于跟不上教学的节奏,能让他们充分体验到成功的喜悦。
2.这样的课堂,学生不满足于课本知识的获得,敢于向课本挑战,从不同的角度提出不同的见解,长此以往,还能进一步培养学生的问题意识,从而达到对课本知识的深层次理解。
3.课堂中教师可以重点点拨预习中产生的疑惑,围绕重点难点组织合作交流,拓展、创新。而不至于课堂中平均用力,突不出重点难点,造成会的学生不愿听,不会的学生听不懂。这样的课堂,充分节约了教学时间,加快了课堂教学的节奏,能有效提高课堂教学的效率,正是我们所追求的有效课堂。
《转化策略》教学反思2六年级下册第六单元《解决问题的策略—转化》第一课时。是在学生已经学习了用画图和列表,以及列举、到推、替换和假设等策略解决问题的基础上进行教学的。教学时我直接出示例题图,让学生感觉到原来的图形面积难以直接比较,从而想到把图形分割之后通过平移和旋转转化成长方形后再比较,这样容易比较出大小。这部分内容放手让学生独立思考与尝试转化的过程,使学生完整地体验转化的应用过程。接着在教学完例1后,通过对过去曾经运用转化策略解决问题的回顾,让学生感受转化策略是一个得到广泛应用的重要策略。 让学生在明白转化的实质是化复杂为简单、转未知为已知之后,就是如何具体运用转化的策略解决问题。
在运用转化策略时,关键是针对每一个具体问题如何进行转化,为了让学生体验转化策略方法的多样性,设计了一些练习,一是空间与图形领域的练习,这部分内容在计算图形的面积与周长时主要采用分割法,通过平移与旋转实施转化的策略解决问题,这是解决复杂图形面积或周长问题时经常用到的方法。二是数与代数领域的练习。练习中的题目都是比较特殊的转化方法,可以在学生将异分母分数加法转化为同分母分数加法的基础上,介绍借助图形的计算方法,让学生知道根据算式可以转化为数形想结合的计算,从而找到另一种解答方法。在练习中让学生通过这些变化的图形和变化的问题提高解决问题的灵活性,选择最优的转化方法,充分感受转化策略的价值。
通过教学反思自己的教学行为,我感觉:
1、例1的教学太过仓促,怎样用“转化”这一策略去把不规则的图形转变为规则图形。学生不是很明白。
2、在回顾学生以曾经运用转化策略解决问题的例子时,学生合作交流学习的方法不适合,应该采用讲授法将如何转化说得再明确一些,,然后具体说说是怎样运用“转化”这一策略,运用“转化”后有什么价值。
3、练习题的处理也缺乏指导。没有站在学生的角度考虑问题。
《转化策略》教学反思3本节课是苏教版六年级数学下册第六单元第一课时,内容是第71-72例一、试一试、练一练及练习十四的1-3题。本节课是在学生已经学习了用画图和列表,以及列举、倒推、替换和假设等策略基础上进行教学的,主要是让学生学会运用转化这一常见的、极其重要的解决问题的策略,通过转化能把较复杂的问题变成较简单的问题,把新知的问题变成旧知的问题。而转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题的解决,更有益于思维的发展。所以本节课的教学不以学生能够解决教材里的各个问题为目的,而在于学生对转化策略的体验与主动应用。
基于此,我设计了以下六个教学环节:第一环节是“创设情境,导入新课”,这一环节教学例1,学生在比较两个不规则图形的面积时产生困惑,我及时引导学生运用已学过的知识来解决这一困惑,即引导学生去探索解决问题的关键是如何将不规则图形转化为规则图形,初步体验转化思想。第二环节是"回顾运用,感知转化",在本环节中我留给学生充分的空间,让学生从图形转化和计算转化两个方面回忆以前运用转化的策略解决过哪些问题,引导学生把以往学习的一些具体的数学方法上升到转化策略的高度来认识,以增强策略意识。感知转化无所不在,真正体验到转化的好处。 随后在第三环节是“观察思考,再探转化”,这一环节主要是教学“试一试”部分,把一个复杂的分数加法计算题结合图形从而转化为一个简单的计算,初步体验数形结合的思想,进一步探究转化。第四环节“及时练习,运用转化”中我改 ……此处隐藏4403个字……学课《用转化的策略解决问题》。同年级组的高教导在前几天也上过这一课,我们六年级的三位数学老师将这一课作为同题研讨,轮流上这一课,进行集体研讨。
记得去年六月份时曾经听我校陈敏娟老师上过这一课,当时的感觉就是这一课时内容不好上,因为它与其他教学内容不同,并不像其他课那样,通过一节课的学习能让学生学到一个具体的知识。这一课没有教给学生什么新的知识,它所要表达的是一种数学思想,即转化,教材借助一些具体的数学问题来向学生传达这一数学思想。听课时的我当时只是站在教师的角度在想不好上,现在轮到自己也要执教这一课了,就还需要思考很多问题。在初步构思这一课的教学预案的那几天里,经常萦绕脑海的一个问题便是什么是转化?。我想如果教师自己都不是十分清楚的话,如何给学生上这一课呢?
转化是解决问题时经常采用的方法,能把较复杂的问题变成较简单的问题,把新颖的.问题变成已经解决的问题。转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题的解决,更有益于思维的发展。
我想这一课的教学目标不是以学生能够解决教材里的各个问题为目的,而在于学生对转化策略的体验与主动应用。一旦学生们具有初步的转化意识和能力后,对以后的学习与解决问题就会产生十分积极的作用。
分析本节课,纵观全程,既把平移,旋转运用到图形等积变化的问题中,又蕴涵探索图形面积公式的转化,还有计算小数乘法的和分数除法时的转化,还有数量关系之间的转化等。通过回忆和交流,意识到转化是经常使用的策略,从而主动应用转化的策略解决问题。基于此,于是采用以下步骤解决。一、创设情境,感知策略。二、合作交流,探究策略。三、拓展运用,提升策略。
应该说整节课的设计都是围绕让学生去感知、探索、体验转化的策略,但上完这一课后,我自我感觉没有达到预期的教学目标。主要问题是学生对转化策略的体验不够,课堂上我没有很好地设计一些问题让学生思考:为什么在解决一些数学问题时需要用到转化的策略?在运用转化策略的过程中又有哪些具体的方法?------很多时候都是作为教师的我在唱独角戏,一个人在那儿说着转化的优点,我的每一次的小结只有化为每个学生的真切体验才是有效的教学。
教学中需要注意的几点:
一、让学生在探索中经历转化的过程。
转化的策略对于学生而言并不陌生,在过去解决问题中学生有过运用转化的策略的经历,只是虽然应用并未提升到策略这一高度,学生对转化策略的应用应该说是处于无意识状态。因而,学习这一策略先必须对这一策略的应用过程重新又一个清晰的感知。借助例题1的学习,我们可以让学生在探索并运用策略解决问题的过程中,经历运用转化策略的关键步骤。第一步,放手让学生在解决问题过程中产生困惑。如例题1中的两个平面图形是不规则图形,无法直接计算出它们的面积。第二步,如何运用已学过的知识来解决这一困惑,即引导学生去探索解决问题的关键是如何将不规则图形转化为规则图形。第三步,思考为什么可以运用转化的策略来解决这一问题,即让学生体验当问题较复杂时可以运用转化的策略使问题变得简单。在随后的练习过程中,教师仍应该不时地组织学生来体验转化的过程,思考每次通过转化将什么问题转化成了什么问题,为什么需要运用转化的策略,对转化的策略你又什么新的认识------
二、在复杂变式的应用中领会转化的方法
在明白并领悟转化的实质是化繁为简,化未知为已知之后,对于具体如何运用转化策略而言,关键是针对每一个具体的问题究竟如何寻找到转化的突破口,如何去实现转化。教材安排的练习中有些问题涉及到较为特殊的转化方法,如例题1后的试一试及练习十四中的第2题的第3小题等。教学中需要教师给予学生较大的探索空间,让学生充分思考,去主动探究如何转化,还需要教师及时组织学生反思运用转化的策略后解决问题时有什么优势,使学生充分感受转化策略的价值。
总而言之,转化的策略不同于假设、枚举等这些运用于特定问题情境的策略,也不同于画图、列表这些一般策略,作为一种广泛运用的策略,它蕴含了一种重要的数学思想。因而,教学这一策略时,教师不能着眼于学生会运用这一策略解决问题,应努力使学生在学习和运用转化策略解决问题的过程中充分体会数学思想的魅力。
《转化策略》教学反思8成功点滴:
1.直观演示,激发寻求策略的内需
有效的数学学习是建立在学生合适的数学现实的基础之上的,五年级学生在以往数学学习过程中都积累了不少“转化”的体验,但这种体验基本上处于无意识的状态,只有合理呈现学习素材,才能促使学生对转化策略形成清晰的认知。为此,在课的一开始,我便呈现了一个直观性和操作性极强的素材图“哪个图形面积大?”学生积极开动脑筋,通过平移和旋转把这两个图形转化为一个长方形。这样以典型而具有直观性的图形转化为切入口,既使学习内容鲜明生动,很快调动起学生积极的学习心向,又能唤醒学生原有认知中的“转化”体验,让学生不知不觉地开始进一步感悟“转化”策略。
2.回顾整理,在复习旧知中感受转化策略
对转化策略的理解不能仅仅依赖直观的演示与形象的操作,更重要的是能让学生亲身经历策略的形成过程,尤其是思维不断发展的过程。因此,教学时,加强了对知识的学习进行系统分类,以逐步建构学生对转化策略的深层理解,让学生经历转化策略的形成过程:(1)图形面积、体积方面的应用;(2)数与计算方面的应用。通过唤醒经验——回顾整理——体会应用,分类让学生经历转化策略的形成过程,符合学生“感知——表象——抽象”的认知规律。
3.学以致用,体验运用策略的价值
在学生经历策略的形成过程后,精心设计一些富有变化的问题是必要的,这对于策略的理解、掌握和熟练运用起着“催化”的作用。在学生学习过程中,我针对性地设计了一些练习题,这些习题的练习,突出了教学的重点,分散了教学的难点,增强了教学的有效性。学以致用,学生对所学知识理解得会更加透彻,学生对策略的价值所在会感受得更加深刻,而且在运用策略的过程中,学生的实践能力也能够得到培养和提高。
4.注重反思,把握提升策略的契机
反思问题往往容易为人们所疏忽,但它是发展数学思维的一个重要方面,也是数学思维过程辩证性的一种体现,即一个思维活动的结束包含着另一个思维活动的开始。因此,在解决问题后应该及时引导学生回顾解决问题的策略,反思策略的运用过程,对具体采用的策略进行分析、加工、整合,从中提炼出应用范围广泛的一般方法,使解决问题的策略得到不断提升,并获得成功的情感体验。总结学习的收获,然后出示数学家的名言,让学生从今天学习转化策略的角度,谈谈自己的理解,力图增强数学学习的文化性、历史性,让学生在与数学家的对话中,充分感受转化价值的魅力所在。
些许遗憾:
1.时间把握不准。由于学生还没有进行系统的整理复习,对于知识的掌握不牢,(如:公式的推导、计算能力等),加之教师缺乏及时、有效的引导,导致了部分环节浪费了时间。
2.语言尚需锤炼。教师的语言不够简练,有时啰嗦。